ADAPTIVE IMMUNITY AND TYPES OF ANTIBODIES

- 1. Helper T cells (AKA CD4 cells): capable of recognizing millions of different peptide sequences.
 - a. activate B cells
 - b. activate cytotoxic T cells
 - c. further stimulate inflammation
- 2. Cytotoxic T cells (AKA CD8 cells)
 - a. Activated CD8 cells destroy pathogens or host cells that have become cancerous; or other WBCs that are autoimmune. They secrete toxic chemicals onto pathogens; and induce apoptosis in host cells.
 - b. memory CD8 cells: remain in the body/circulation for months or years
- 3. **B cells once activated, differentiate into plasma cells,** which produce antibodies to the recognized antigen.
 - Antibody Structure: 4 protein chains; 2 are "heavy" (long protein sequence) and 2 "light" (short protein sequence). Shaped like a Y. The arms of the Y are variable, depending on which antigen the antibody matches with. This is called the antigen-binding sequence of the antibody. The base of the Y determines the <u>class</u> of immunoglobulins.
 - ➤ Antibodies stick to the pathogen and target it for phagocytosis by macrophages
 - The most common antibody classes are:
 - 1. **IgM**: Produced by plasma B cells when they are first exposed to a recognized antigen. Memory cells for this recognized pathogen will make a different class:
 - b. **Memory B cells**: remain in the body/circulation for months or years. They exhibit a "class switch" when stimulated by the antigen, and produce one of the following types of antibodies. The variable region will remain the same, but the base of the Y is different.
 - 1. **IgA**: Produced by plasma B cells present in all of the mucous membranes. Very plentiful in colostrum, since the newborn hasn't built up his own IgA production yet.
 - 2. **IgG**: Memory plasma B cells make this class of antibody to guard the bloodstream from future attacks by the pathogen.
 - 3. **IgE**: Antibodies that specialize in attacking worm and fungal infections. Because there aren't many of those in the U.S., plasma B cells that produce IgE antibodies may be "untrained" and activate inappropriately, resulting in allergies.